/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Deriving Abstract Factory
The dependency injection pattern

/v

AARHUS UNIVERSITET

* The Recelpt class revisited
— Add responsibility to print itself

Receipt

Prelude

e know its value in minutes parking time
e print itself

— Provided by method

public void print(PrintStream stream);

— Result:

——————— FAREKTIDNG R ECETET —_——
Value 049 minutes.
Car parked at 08:06

Demo: frsproject/paystation-facade

/v

AARHUS UNIVERSITET B etaTown

« Change is the only constant in software dev.
* Req: Recelpts with bar code for easy scanning

——————— P AR K INLG R E CE I P T —_———
Value 049 minutes.
Car parked at 08:06

%II Lrerr et e e

«interface»
Receipt

N
s

StandardReceipt BarcodeReceipt

/v

AARHUS UNIVERSITET
e Something must be done at:

Code View

public Receipt buy() {
Eecelipt r = new EReceiptImpl (CimeBought) ;
reset () -
return r;

A ’new BarCodeReceiptimpl(tb)” in BetaTown

/v

ARHUS UNIVERSITE Yet another Variability

 New variability point! Resulting configurations:

Table 13.1: The three different configurations of the pay station.

Variability points

Product Rate Receipt
Alplmtown Linear Standard
Betatown Progressive | Barcode
Gammatown Altemating Standard

/v

AARHUS UNIVERSITET

The Compositional Design

/v

AARHUS UNIVERSITET

« Cranking the 3-1-2 blindly
— 3) ldentify what varies: instantiation of receipts
— 1) Interface express responsibility: Receiptlssuer
— 2) Compose behavior: delegate to Recelptissuer

«interface»
PayStation

«interface»
Receiptissuer

-- Responsibilities:

Accept payment

Know earning, time bought
Handle buy and cancel

<>

-- Responsibilities
Issue receipts

3-1-2

createReceipt()

issuer

«interface»
Receipt

/v

AARHUS UNIVERSITET

* Quickly add a test:

Trying It out

@BeforeEach
public void setUp () f{
ps = new PayStationImpl(coinValue —> coinValue,
new StandardReceiptlssuer());
}

 Low cohesion: object creation in two different
objects — why not make one cohesive object???

TDD Principle: Do Over

What do you do when you are feeling lost? Throw away the code and start over.

/v

AARHUS UNIVERSITET More COheSIVe DeS|gn

* One place to “create delegates™: the factory
PayStationFactory

o Create receipts
e Create rate strategies

«interface»
«interface» PayStationFactory
PayStation

-- Responsibilities
Create receiets
Create rate strategLi

createReceipt()
createRateStrategy()

L T -
) !
! {
— { -
~

.
s ~
-
e
S

AlphaTownFactory BetaTownFactory GammaTownFactory

/v

AARHUS UNIVERSITET U S ag e

public class PayStationlmpl implements PayStati Only one delegate!

J

[...]
/% the strategy for rate calculations x/
private RateStrategy rateStrategy;

/*x the factory that defines strategies x/ Uncle Bob is happy
private PayStationFactory factory;

/*x Construct a pay station.
@param factory the factory to produyfe strategies
*/
public PayStationImpl(PayStationFactory factory) |
this . factory = factory;

this . rateStrategy = factory.createRateStrategy ();
reset ();

co]
public Receipt buy() |

Receipt r = factory.createReceipt(timeBought);
reset ();
return r;

}

J
[]

/v

Listing: chapter/abstract-factory /iteration-1a/src/main/java/paystation/domain/PayStationFactoryjava
AARHUS UNIVERSITET

clas

package paystation.domain;

/** The factory for creating the objects that configure

a pay station for the particular town to operate in.
4

public interface PayStationFactory |{

/** Create an instance of the rate strategy to use. */
public RateStrategy createRateStrategy ();

/*+ Create an instance of the receipt.

* @param the number of minutes the receipt represents. =/
public Receipt createReceipt(int parkingTime);

}

s TestTownFactory implements PayStationFactory |

public RateStrategy createRateStrategy () |{

}

return coinValue -> coinValue;

public Receipt createReceipt(int parkingTime) {

}
}

return new StandardReceipt(parkingTime);

The ‘test town’ which uses the ‘evident test’ rate strategy, for unit

testing the PayStation...

/v

To Configure BetaTown

AARHUS UNIVERSITET
* The factory for BetaTown Variability points
Product Rate | Receipt
Alphatown Linear Standard
Betatown Progfessive | Bgafcode
Gammatown ternating Standard
class BetaTownFactory implements PayStationFact {

public RateStrategy createRateStrategy()
return new ProgressiveRateStrategy();

}

public Receipt createReceipt(int parkingTime)
return new StandardReceipt(parkingTime, true);

}
¥

Important benefit: all configuration is contained in one java source file!

Why? Cohesion — do the same thing in the same place!

/v SideBar

AARHUS UNIVERSITET
 Huh? No ‘barcode’ receipt subclass? No composition?

class BetaTownFactory implements PayStationFactory {
public RateStrategy createRateStrategy() {
return new ProgressiveRateStrategy();
}
public Receipt createReceipt(int parkingTime) {
return new StandardReceipt(parkingTime, true);
}
}

* Only two variants envisioned!

— Parametric variability much simpler = the right variability
management choice!

CS@AU Henrik Baerbak Christensen 13

/v

AARHUS UNIVERSITET

The Compositional Process

/v

AARHUS UNIVERSITET The Process Again Again

o @ [identified some behavior, creating objects, that varies between different products.
So far products. vary with regardS to the types of receipts and the types of rate
calculations.

o @ I expressed the responsibility of creating objects in an interface. PayStationFactory
expressed this reponsibility.

o @ [let the pay station delegate all creation of objects it needs to the delegate object,
namely the factory. I can define a factory for each product variant (and particular
testing variants), and provide the pay station with the factory. The pay station
then delegates object creation to the factory instead of doing it itself.

/v Or...

AARHUS UNIVERSITET

Definition: Dependency inversion principle
High level modules should not depend upon low level modules. Both

should depend upon abstractions. Abstractions should not depend
upon details. Details should depend upon abstractions. (Martin 1996)

| Who s this Martin guy?

Definition: Dependency injection

High-level, common, abstractions should not themselves establish de-
pendencies to low level, implementing, classes, instead the dependen-
cies should be established by injection, that is, by client objects. (Fowler
2004)

/v

AARHUS UNIVERSITET

Abstract Factory

\ 4
AARHUS UNIVERSITET

« 3-1-2 has derived yet
another design pattern

— An object (factory) whose
responsibility it is to create
objects (products) that the
client need.

Deriving it...

[13.1] Design Pattern: Abstract Factory

Intent Provide an interface for creating families of related or dependent ob-
jects without specifying their concrete classes,
Problem Families of related objects need to be instantiated. Product variants
need to be consistently configuned.
Solution Define an abstraction whose responsibility it is to create families of ob-
jects. The client delegates object creation to instanoes of this abstraction.
Structure:
- ainterfaces
Client AbstractFacrory
create ProductAf)
cmateM‘lﬁ”
ProductA (jl'
F 8
y) ConcreteFactory{ i
ConcreteProductA1 | | ConcreteProductA2 createProductAf) i
create ProductE() H
Conecrete Factory2
winterfaces
ProductB createProductA()
teProductB()
~7.. cred (]

.“'
£ ConcreteProductB2
ConcreteProductB1

Roles

Cost -
Benefit

Abstract Factory defines a common interface for object creation. Pro-
ductA defines the interface of an object, ConcreteProductAl, (product
A in variant 1) required by the client ConcreteFactoryl is responsible
for creating Products that belong to the variant 1 family of objects that
are consistent with each other

It lowers coupling between climt and products as there are no NBW state-
ments in the client to create high coupling. ¥ makes exchanging product
families easy by providing the client with different factories. It promotes
consistency among products as all instantiation code is within the same
class definition that is easy to overview. However, supporting new kinds
of products is difficult: every new product introduced requires all facto-
ries to be changed.

/v

AARHUS UNIVERSITET

The Structure...

. «interface»
Client AbstractFactory

createProductA()
«interface» createProductB()

ProductA 4" /”\
<7 X |

N ConcreteFactory1
ConcreteProductA1 | | ConcreteProductA2 createProductA()
createProductB() i
\ M i
T ConcreteFactory2
«interface» A
ProductB createProductA()
createProductB()

#
-

T N

ConcreteProductB2 =
ConcreteProductB1

/v

AARHUS UNIVERSITET Mandato 'y Note

« Abstract Factory Is complex
— Lots of relations
— Easy to get confused or miss the whole idea
— Easy to mis-implement a little with BIG consequences

* Morale
— Do not underestimate it in the Mandatory...

