
Software Engineering

and Architecture

Deriving Abstract Factory

The dependency injection pattern



Prelude

• The Receipt class revisited

– Add responsibility to print itself

– Provided by method

– Result:

Demo: frsproject/paystation-facade



BetaTown

• Change is the only constant in software dev.

• Req: Receipts with bar code for easy scanning



Code View

• Something must be done at:

A ”new BarCodeReceiptImpl(tb)” in BetaTown



Yet another Variability

• New variability point! Resulting configurations:



The Compositional Design



3-1-2

• Cranking the 3-1-2 blindly

– 3) Identify what varies: instantiation of receipts

– 1) Interface express responsibility: ReceiptIssuer

– 2) Compose behavior: delegate to ReceiptIssuer



Trying it out

• Quickly add a test:

• Low cohesion: object creation in two different 

objects – why not make one cohesive object???



More Cohesive Design

• One place to “create delegates”: the factory



Usage
Only one delegate!

Uncle Bob is happy



The ‘test town’ which uses the ‘evident test’ rate strategy, for unit 
testing the PayStation…



To Configure BetaTown

• The factory for BetaTown

Important benefit: all configuration is contained in one java source file!

Why? Cohesion – do the same thing in the same place!



SideBar

• Huh? No ‘barcode’ receipt subclass? No composition?

• Only two variants envisioned!

– Parametric variability much simpler = the right variability 

management choice!

CS@AU Henrik Bærbak Christensen 13



The Compositional Process



The Process Again Again



Or…

Who is this Martin guy?



Abstract Factory



Deriving it…

• 3-1-2 has derived yet 

another design pattern

– An object (factory) whose 

responsibility it is to create 

objects (products) that the 

client need.



The Structure…



Mandatory Note

• Abstract Factory is complex

– Lots of relations

– Easy to get confused or miss the whole idea

– Easy to mis-implement a little with BIG consequences

• Morale

– Do not underestimate it in the Mandatory…


